2018-10-20-生信分析中的常见文件格式

常见文件的格式以及查看方式

Posted by DL on October 20, 2018

参考来源:生信宝典-lingludi

1. 前言

  生信分析过程中,我们会与多种不同格式的文件打交道,除了原始测序数据fastq之外,还需要准备基因组文件fasta格式和基因注释文件gtf格式。在分析的过程中还会有众多中间文件的生成,如bed、bed12、sam、bam、wig、bigwig、bedgraph等,生成后我们一般会查看下内容了解文件每一列的含义,以此来决定需要提取哪些有用信息列来进行下一步分析。


2. 常见文件的格式及查看方式

2.1 测序数据FASTQ文件

  • 1)文件用途:样品测序返回的数据一般存储为fastq文件,通常是压缩文件filename.fq.gz的格式,节省存储空间和传输时间。

  • 2)查看方式:

# zcat查看gzip压缩的文件
# head -n 8 显示前8行文件内容(前8行代表2条序列)

zcat filename.fq.gz | head -n 8

# @SRR1039521.13952745/1
# TTCCTTCCTCCTCTCCCTCCCTCCCTCCTTTCTTTCTTCCTGTGGTTTTTTCCTCTCTTCTTC
# +
# HIJIIJHGHHIJIIIJJJJJJJJJJJJJJJJJJJJJIIJJFIDHIBGHJIHHHHHHFFFFFFE
  • 3)格式说明:fastq文件每4行代表一条序列
第一行:记录序列测序时所用仪器以及在测序通道中坐标信息,以@开头;
第二行:测序的序列信息,以ATCGN表示,由于荧光信号干扰无法判断是什么碱基时就用N表示;
第三行:通常一个+;
第四行:与第二行碱基信息一一对应,存储测序碱基的质量值。
  • 4)其他常用命令
# 计算read数
# wc -l: 计算行数
# bc -l: 计算器 (-l:浮点运算)
# 为什么除以4,又除以1000000? 计算的是million值

echo "`zcat trt_N061011_1.fq.gz | wc-l` / (4*1000000)" | bc -l

# 测序碱基数计算
zcat trt_N061011_1.fq.gz | awk'{if(FNR%4==0) base+=length}END{print base/10^9,"G";}'

2.2 基因组FASTA文件

  • 1)文件用途:fasta文件用于序列存储,可以是DNA或蛋白序列,在此FASTA文件存储了基因组序列的信息。

  • 2)查看方式:

# cat查看fasta文件的内容
# head -n 8 显示前8行文件内容=

cat filename.fasta | head -n 8

>1 dna_sm:chromosomechromosome:GRCh38:1:1:248956422:1 REF
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
.....
ttgggctggggcctggccatgtgtatttttttaaatttccactgatgattttgctgcatg
gccggtgttgagaatgactgCGCAAATTTGCCGGATTTCCTTTGCTGTTCCTGCATGTAG
TTTAAACGAGATTGCCAGCACCGGGTATCATTCACCATTTTTCTTTTCGTTAACTTGCCG
.....
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

# 通常要求序列名字行简单为好,而且一般加chr作为开头
  • 3)格式说明:

  • 序列名字行:以>符号开头,记录了该序列类型和所在基因组位置信息;

  • 序列行(一行或多行):序列信息,soft-masked基因组会把所有重复区和低复杂区的序列用小写字母标出的基因组,小写字母n表示未知碱基


2.3 基因组注释文件gff和gtf

  • 1)文件用途:gff全称General featureformat,主要是用来注释基因组。gtf全称Gene transfer format,主要是用来对基因进行注释。

  • 2)查看方式:同上

  • 3)格式说明:

  • 两者均是一个9列的基因信息注释文件,前8列的信息几乎一样,区别在于第9列。

  • 从ensemble下载的gtf文件前5行一般是以#开头的注释信息,后续分析中用不上需要去除,同时需要给第一列添加chr标签(与基因组序列一致),代码如下:

# grep 匹配查询 -v 输出不匹配的行
gunzip Homo_sapiens.GRCh38.94.gtf.gz -c |grep -v '^#' | sed '/^[^chr]/ s/^/chr/' >GRCh38.gtf

2.4 bed文件

分析过程中的bed文件一般代表区域信息,如表示Peak位置的bed文件,表示基因注释的bed12文件。

  • 表示基因注释时,gtf/gff和bed文件的区别

1)gtf/gff文件一行表示一个exon/CDS等子区域,多行联合表示一个gene;bed文件一行表示一个gene;

2)gtf文件中碱基位置定位方式是1-based,而bed中碱基定位方式是0-based,如下图所示。

FxcuFJ.png

  • bed文件每一行对应信息

必须包含的3列信息:

1)chrom:染色体名字 (e.g.chr3, chrY, chr2_random或者scaffold10671)。

2)chromStart:基因在染色体或scaffold上的起始位置(0-based)。

3)chromEnd:基因在染色体或scaffold上的终止位置 (前闭后开)。

可选的9列信息:

4)name:bed文件的行名。

5)score:本条基因在注释数据集文件中的评分(0-1000),在Genome Browser中会根据不同区段的评分显示对应的阴影强度(评分越高灰度越高)。

6)strand:链的方向+、-或. (.表示不确定链的方向)

7)thickStart:CDS区(编码区)的起始位置,即起始密码子的位置。

8)thickEnd:The endingposition at which the feature is drawn thickly (for example the stop codon ingene displays).

9)itemRgb:RGB颜色值(如:255,0,0),方便在GenomeBrowser中查看。

10)blockCount:bed行中外显子的数目。

11)blockSizes:逗号分割的列,数目与blockCount值对应,每个数表示对应外显子的碱基数。

12)blockStarts:逗号分割的列,数目与blockCount值对应,每个数表示对应外显子的起始位置(数值是相对ChromStart计算的)。


2.5 sam和bam文件

sam文件全称The SequencingAlignment/Map Format,是Alignment/Map步骤bwa/STAR/HISAT2等软件对结果的标准输出文件,用于存储reads比对到参考基因组的比对结果,是一个纯文本格式,文件一般较大。为了节省硬盘存储,一般使用其高效压缩的二进制格式bam文件。

  • 利用samtools view的-b参数就能把sam文件转为bam文件

1)sam文件查看方式

在linux终端直接用less即可进行查看;

2)bam文件查看方式

需要借助samtools view工具进行查看

samtools view filename.bam | less -S
samtools view -h filename.bam | less -S

NGS分析中大多数文件都是由header和record两部分组成,加上-h参数后可以将header显示出来,默认是不显示的。

@HD    VN:1.5  SO:coordinate
@SQ    SN:chr1 LN:248956422
@SQ    SN:chr10        LN:133797422
......
@SQ    SN:chrKI270392.1        LN:971
@SQ    SN:chrKI270394.1        LN:970
@RG    ID:BH_H3K27ac_2 LB:BH_H3K27ac_2 SM:BH_H3K27ac_2
@PG    ID:bwa  PN:bwa  VN:0.7.15-r1140 CL:bwa mem -M -t 8 -R@RG\tID:BH_H3K27ac_2\tLB:BH_H3K27ac_2\tSM:BH_H3K27ac_2\tPL: /MP
@PG    ID:MarkDuplicates      VN:1.138(aa51703435dc6a423013e74e56b0b68405facd79_1439324166)   CL:picard.sam.markduplicates.
K00141:244:HVL3NBBXX:8:2119:27235:3145399      chr1    10016  32      115M    =      10016   115     CCCTAACCCTAACCCTAACCC
K00141:244:HVL3NBBXX:8:2119:27235:31453147     chr1    10016  32      115M    =      10016   -115   CCCTTACCCTAACCCTAACCC
  • header内容

@HD:是必须的标准文件头,包含版本信息;

@SQ:参考序列染色体名字和长度信息 (SN:scaffold name; LN: length);

@RG:重要read group信息,通常包含测序平台,测序文库和样本ID等信息,分析时用于区分不同样本(重测序时用到);

@PG:生成此文件的操作过程和参数信息 (program)。

  • record内容

每一行就是一条read比对上参考基因组的信息,总共12列,用tab键分割。

# 1. read名称;
# 2. 比对信息位flag值;
# 3. 参考序列染色体编号;
# 4. 5′端起始位置;
# 5. MAPQ:mapping quality,描述比对的质量,数字越大,特异性越高;
# 6. CIGAR字符串,记录插入、删除、错配等信息;
# 7. 配对read所比对到的染色体,仅双端测序的数据才有;
# 8. 配对read所比对到的位置,仅双端测序的数据才有;
# 9. 插入片段的长度,仅双端测序的数据才有;
# 10. read序列;
# 11. read质量值;
# 12. 12列以后的信息都是metadata,程序用标记

sam文件中第二列flag信息很重要,下面做进一步解释。

利用samtools flagstat工具可以查看bam文件中比对的flag信息,并输出比对的统计结果。

samtools flagstat *.bam

flag一共有12个标签,使用16进制数表示,每个标签值是2^(n-1),其中n<=12,每个值有其对应的唯一解释含义,具体见下图。

FxgpnK.png

你会发现随机挑选几个值做加和运算,他们的结果都是唯一的,所以在bam文件中第二列flag的值代表这条序列符合下图所示条件的值的和。

所以根据这个值我们可以判断这条序列是双端测序还是单端测序;如果是双端测序,reads来自左端还是右端。比如65 只能是1和64组成,代表这个序列是双端测序,而且是read1。

每次转换很头疼?别担心,网上有很多解码flag含义的在线工具,如SAM Format(网址:https://www.samformat.info/sam-format-flag)

输入flag的值,解析工具会返回匹配上的信息。如果是单端测序,flag值都是偶数。

FxgejP.png

如果是双端测序,工具会帮我们把另外一端序列的flag值返回,并且将这些数字情况大致分为5类,在右侧进一步显示这个值对应的含义。

FxgKHS.png


2.6 wig、bigwig和bedgraph文件

上述bam和sam文件可以帮助我们探索reads在参考基因组中的比对情况,导入基因组浏览器查看比对状态和突变信息。而wiggle(简称wig)、bigwig(简写bw)以及bedgraph(简写bdg)只包含区域和区域的覆盖度信息,文件更小,用于可视化更方便,可以导入基因组浏览器(Genome Browser)中进行可视化,以查看reads在参考基因组各个区域的覆盖度并检测测序深度。这几个文件在ChIP-seq数据分析Call Peak阶段会生成,可以利用IGV等工具进行可视化,方便查看组蛋白修饰的程度。

  • wiggle:展示区域的密度或强度信息,如GCpercent, probability scores, and transcriptome data
variableStep chrom=chr2
300701 12.5
300702 12.5
300703 12.5
300704 12.5
300705 12.5
  • bedGraph: bed与wig的结合,更省空间和灵活,展示信息与wig类似。 (bedGraph的格式一般有四列,Chr、start、end和value,并且坐标是以0为起始左闭右开)
chromA chromStartA  chromEndA  dataValueA
chromB chromStartB  chromEndB  dataValueB
  • bigWig: wig文件的二进制压缩格式,可通过wigToBigWig工具转换